### 🚀 Performance (CPU)
* Replaces `np.polyval` with a parallel Numba JIT function (`_calculate_ranks_numba`).
* Replaces $O(N \log N)$ `np.argsort` with $O(N)$ `np.argpartition` in the GA loop.
* Adds `numba` as a core dependency.
### 🧠 Robustness (Algorithm)
* Implements Blend Crossover (BLX-$\alpha$) for better, extrapolative exploration.
* Uses a hybrid selection model (top X% for crossover, 100% for mutation) to preserve root niches.
* Adds `selection_percentile` and `blend_alpha` to `GA_Options` for tuning.
The previous GA logic was returning the "top N" solutions, which led to test failures when the algorithm correctly converged on only one of all possible roots (e.g., returning 1000 variations of -1.0).
This commit fixes the root-finding logic to correctly identify and return *all* unique, high-quality roots:
1. **feat(api):** Adds `root_precision` to `GA_Options`. This new parameter (default: 5) allows the user to control the number of decimal places for clustering unique roots.
2. **fix(ga):** Replaces the flawed "top N" logic in both `_solve_x_numpy` and `_solve_x_cuda`. The new process is:
* Dynamically sets a `quality_threshold` based on the user's `root_precision` (e.g., `precision=5` requires a rank > `1e6`).
* Filters the *entire* final population for all solutions that meet this quality threshold.
* Rounds these high-quality solutions to `root_precision`.
* Returns only the `np.unique()` results.
This ensures the solver returns all distinct roots that meet the accuracy requirements, rather than just the top N variations of a single root.
Reviewed-on: #19
Co-authored-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
Co-committed-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
This commit introduces a major enhancement to the genetic algorithm's convergence logic and refactors key parts of the API for better clarity and usability.
- **feat(ga):** Re-implements the GA solver (CPU & CUDA) to use a more robust strategy based on Elitism, Crossover, and Mutation. This replaces the previous, less efficient model and is designed to significantly improve accuracy and convergence speed.
- **feat(api):** Updates `GA_Options` to expose the new GA strategy parameters:
- Renames `mutation_percentage` to `mutation_strength` for clarity.
- Adds `elite_ratio`, `crossover_ratio`, and `mutation_ratio`.
- Includes a `__post_init__` validator to ensure ratios are valid.
- **refactor(api):** Moves `quadratic_solve` from a standalone function to a method of the `Function` class (`f1.quadratic_solve()`). This provides a cleaner, more object-oriented API.
- **docs:** Updates the README, `GA_Options` doc page, and `quadratic_solve` doc page to reflect all API changes, new parameters, and updated usage examples.
- **chore:** Bumps version to 0.4.0.
Reviewed-on: #16
Co-authored-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
Co-committed-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>