Files
PolySolve/tests/test_polysolve.py
Jonathan Rampersad 956c270762
Some checks failed
Run Python Tests / test (3.10) (push) Failing after 1m36s
Run Python Tests / test (3.12) (push) Failing after 2m3s
Run Python Tests / test (3.8) (push) Failing after 1m29s
FIXED: typo in test file
2025-06-16 19:08:51 -04:00

111 lines
3.9 KiB
Python

import pytest
import numpy as np
# Try to import cupy to check for CUDA availability
try:
import cupy
_CUPY_AVAILABLE = True
except ImportError:
_CUPY_AVAILABLE = False
from polysolve import Function, GA_Options, quadratic_solve
@pytest.fixture
def quadratic_func() -> Function:
"""Provides a standard quadratic function: 2x^2 - 3x - 5."""
f = Function(largest_exponent=2)
f.set_coeffs([2, -3, -5])
return f
@pytest.fixture
def linear_func() -> Function:
"""Provides a standard linear function: x + 10."""
f = Function(largest_exponent=1)
f.set_coeffs([1, 10])
return f
# --- Core Functionality Tests ---
def test_solve_y(quadratic_func):
"""Tests if the function correctly evaluates y for a given x."""
assert quadratic_func.solve_y(5) == 30.0
assert quadratic_func.solve_y(0) == -5.0
assert quadratic_func.solve_y(-1) == 0.0
def test_differential(quadratic_func):
"""Tests the calculation of the function's derivative."""
derivative = quadratic_func.differential()
assert derivative.largest_exponent == 1
# The derivative of 2x^2 - 3x - 5 is 4x - 3
assert np.array_equal(derivative.constants, [4, -3])
def test_quadratic_solve(quadratic_func):
"""Tests the analytical quadratic solver for exact roots."""
roots = quadratic_solve(quadratic_func)
# Sorting ensures consistent order for comparison
assert sorted(roots) == [-1.0, 2.5]
# --- Arithmetic Operation Tests ---
def test_addition(quadratic_func, linear_func):
"""Tests the addition of two Function objects."""
# (2x^2 - 3x - 5) + (x + 10) = 2x^2 - 2x + 5
result = quadratic_func + linear_func
assert result.largest_exponent == 2
assert np.array_equal(result.constants, [2, -2, 5])
def test_subtraction(quadratic_func, linear_func):
"""Tests the subtraction of two Function objects."""
# (2x^2 - 3x - 5) - (x + 10) = 2x^2 - 4x - 15
result = quadratic_func - linear_func
assert result.largest_exponent == 2
assert np.array_equal(result.constants, [2, -4, -15])
def test_multiplication(linear_func):
"""Tests the multiplication of a Function object by a scalar."""
# (x + 10) * 3 = 3x + 30
result = linear_func * 3
assert result.largest_exponent == 1
assert np.array_equal(result.constants, [3, 30])
# --- Genetic Algorithm Root-Finding Tests ---
def test_get_real_roots_numpy(quadratic_func):
"""
Tests that the NumPy-based genetic algorithm approximates the roots correctly.
"""
# Using more generations for higher accuracy in testing
ga_opts = GA_Options(num_of_generations=25, data_size=50000)
roots = quadratic_func.get_real_roots(ga_opts, use_cuda=False)
# Check if the algorithm found values close to the two known roots.
# We don't know which order they'll be in, so we check for presence.
expected_roots = np.array([-1.0, 2.5])
# Check that at least one found root is close to -1.0
assert np.any(np.isclose(roots, expected_roots[0], atol=1e-2))
# Check that at least one found root is close to 2.5
assert np.any(np.isclose(roots, expected_roots[1], atol=1e-2))
@pytest.mark.skipif(not _CUPY_AVAILABLE, reason="CuPy is not installed, skipping CUDA test.")
def test_get_real_roots_cuda(quadratic_func):
"""
Tests that the CUDA-based genetic algorithm approximates the roots correctly.
This test implicitly verifies that the CUDA kernel is functioning.
It will be skipped automatically if CuPy is not available.
"""
ga_opts = GA_Options(num_of_generations=25, data_size=50000)
roots = quadratic_func.get_real_roots(ga_opts, use_cuda=True)
expected_roots = np.array([-1.0, 2.5])
# Verify that the CUDA implementation also finds the correct roots within tolerance.
assert np.any(np.isclose(roots, expected_roots[0], atol=1e-2))
assert np.any(np.isclose(roots, expected_roots[1], atol=1e-2))