46 lines
1.3 KiB
TypeScript
46 lines
1.3 KiB
TypeScript
import { streamText } from 'ai';
|
|
import { z } from 'zod';
|
|
import { zodToJsonSchema } from 'zod-to-json-schema'
|
|
|
|
import { o3MiniModel } from './ai/providers';
|
|
import { systemPrompt } from './prompt';
|
|
|
|
type PartialFeedback = DeepPartial<z.infer<typeof feedbackTypeSchema>>
|
|
|
|
export const feedbackTypeSchema = z.object({
|
|
questions: z.array(z.string())
|
|
})
|
|
|
|
export function generateFeedback({
|
|
query,
|
|
numQuestions = 3,
|
|
}: {
|
|
query: string;
|
|
numQuestions?: number;
|
|
}) {
|
|
const schema = z.object({
|
|
questions: z
|
|
.array(z.string())
|
|
.describe(
|
|
`Follow up questions to clarify the research direction, max of ${numQuestions}`,
|
|
),
|
|
});
|
|
const jsonSchema = JSON.stringify(zodToJsonSchema(schema));
|
|
const prompt = [
|
|
`Given the following query from the user, ask some follow up questions to clarify the research direction. Return a maximum of ${numQuestions} questions, but feel free to return less if the original query is clear: <query>${query}</query>`,
|
|
`You MUST respond in JSON with the following schema: ${jsonSchema}`,
|
|
].join('\n\n');
|
|
|
|
const stream = streamText({
|
|
model: o3MiniModel,
|
|
system: systemPrompt(),
|
|
prompt,
|
|
});
|
|
|
|
return parseStreamingJson(
|
|
stream.textStream,
|
|
feedbackTypeSchema,
|
|
(value: PartialFeedback) => !!value.questions && value.questions.length > 0
|
|
)
|
|
}
|