import { createOpenAI } from '@ai-sdk/openai' import { getEncoding } from 'js-tiktoken' import { RecursiveCharacterTextSplitter } from './text-splitter' // Providers const openai = createOpenAI({ apiKey: import.meta.env.VITE_OPENAI_API_KEY!, baseURL: import.meta.env.VITE_OPENAI_ENDPOINT || 'https://api.openai.com/v1', }) const customModel = import.meta.env.VITE_OPENAI_MODEL || 'o3-mini' // Models export const o3MiniModel = openai(customModel, { // reasoningEffort: customModel.startsWith('o') ? 'medium' : undefined, structuredOutputs: true, }) const MinChunkSize = 140 const encoder = getEncoding('o200k_base') // trim prompt to maximum context size export function trimPrompt( prompt: string, contextSize = Number(import.meta.env.VITE_CONTEXT_SIZE) || 128_000, ) { if (!prompt) { return '' } const length = encoder.encode(prompt).length if (length <= contextSize) { return prompt } const overflowTokens = length - contextSize // on average it's 3 characters per token, so multiply by 3 to get a rough estimate of the number of characters const chunkSize = prompt.length - overflowTokens * 3 if (chunkSize < MinChunkSize) { return prompt.slice(0, MinChunkSize) } const splitter = new RecursiveCharacterTextSplitter({ chunkSize, chunkOverlap: 0, }) const trimmedPrompt = splitter.splitText(prompt)[0] ?? '' // last catch, there's a chance that the trimmed prompt is same length as the original prompt, due to how tokens are split & innerworkings of the splitter, handle this case by just doing a hard cut if (trimmedPrompt.length === prompt.length) { return trimPrompt(prompt.slice(0, chunkSize), contextSize) } // recursively trim until the prompt is within the context size return trimPrompt(trimmedPrompt, contextSize) }