feat: respond in user's language, style fixes and research depth fixes

This commit is contained in:
AnotiaWang
2025-02-12 19:34:21 +08:00
parent 5a973b5d63
commit b0c86ce2e2
8 changed files with 80 additions and 34 deletions

View File

@ -8,7 +8,7 @@
import type { TreeNode } from './Tree.vue' import type { TreeNode } from './Tree.vue'
import { marked } from 'marked' import { marked } from 'marked'
const { t } = useI18n() const { t, locale } = useI18n()
const emit = defineEmits<{ const emit = defineEmits<{
(e: 'complete', results: ResearchResult): void (e: 'complete', results: ResearchResult): void
}>() }>()
@ -150,6 +150,7 @@
query, query,
maxDepth: depth, maxDepth: depth,
breadth, breadth,
language: t('language', {}, { locale: locale.value }),
onProgress: handleResearchProgress, onProgress: handleResearchProgress,
}) })
} catch (error) { } catch (error) {
@ -181,7 +182,7 @@
</div> </div>
<div v-if="selectedNode" class="p-4"> <div v-if="selectedNode" class="p-4">
<USeparator :label="t('webBrowsing.nodeDetails')" /> <USeparator :label="t('webBrowsing.nodeDetails')" />
<h2 class="text-xl font-bold mt-2">{{ selectedNode.label }}</h2> <h2 class="text-xl font-bold my-2">{{ selectedNode.label }}</h2>
<!-- Root node has no additional information --> <!-- Root node has no additional information -->
<p v-if="selectedNode.id === '0'"> <p v-if="selectedNode.id === '0'">
@ -191,15 +192,23 @@
<h3 class="text-lg font-semibold mt-2"> <h3 class="text-lg font-semibold mt-2">
{{ t('webBrowsing.researchGoal') }} {{ t('webBrowsing.researchGoal') }}
</h3> </h3>
<p class="whitespace-pre-wrap">{{ selectedNode.researchGoal }}</p> <p
v-if="selectedNode.researchGoal"
class="prose max-w-none"
v-html="marked(selectedNode.researchGoal, { gfm: true })"
/>
<h3 class="text-lg font-semibold mt-2"> <h3 class="text-lg font-semibold mt-2">
{{ t('webBrowsing.visitedUrls') }} {{ t('webBrowsing.visitedUrls') }}
</h3> </h3>
<ul class="list-disc list-inside"> <ul class="list-disc list-inside">
<li v-for="(url, index) in selectedNode.visitedUrls" :key="index"> <li
v-for="(url, index) in selectedNode.visitedUrls"
class="whitespace-pre-wrap break-all"
:key="index"
>
<UButton <UButton
class="!p-0 break-all whitespace-pre-wrap" class="!p-0 contents"
variant="link" variant="link"
:href="url" :href="url"
target="_blank" target="_blank"
@ -212,13 +221,12 @@
<h3 class="text-lg font-semibold mt-2"> <h3 class="text-lg font-semibold mt-2">
{{ t('webBrowsing.learnings') }} {{ t('webBrowsing.learnings') }}
</h3> </h3>
<ul class="list-disc list-inside"> <p
<li v-for="(learning, index) in selectedNode.learnings"
v-for="(learning, index) in selectedNode.learnings" class="prose max-w-none"
:key="index" :key="index"
v-html="marked(learning)" v-html="marked(`- ${learning}`, { gfm: true })"
></li> />
</ul>
</template> </template>
</div> </div>
</div> </div>

View File

@ -14,7 +14,7 @@
(e: 'submit', feedback: ResearchFeedbackResult[]): void (e: 'submit', feedback: ResearchFeedbackResult[]): void
}>() }>()
const { t } = useI18n() const { t, locale } = useI18n()
const feedback = ref<ResearchFeedbackResult[]>([]) const feedback = ref<ResearchFeedbackResult[]>([])
const isLoading = ref(false) const isLoading = ref(false)
@ -37,6 +37,7 @@
for await (const f of generateFeedback({ for await (const f of generateFeedback({
query, query,
numQuestions, numQuestions,
language: t('language', {}, { locale: locale.value }),
})) { })) {
const questions = f.questions!.filter((s) => typeof s === 'string') const questions = f.questions!.filter((s) => typeof s === 'string')
// Incrementally update modelValue // Incrementally update modelValue

View File

@ -27,14 +27,19 @@
const icon = computed(() => { const icon = computed(() => {
const result = { name: '', pulse: false } const result = { name: '', pulse: false }
if (!props.node.status) return result if (!props.node.status) return result
switch (props.node.status) { switch (props.node.status) {
case 'generating_query': case 'generating_query':
result.name = 'i-lucide-clipboard-list' result.name = 'i-lucide-clipboard-list'
result.pulse = true result.pulse = true
break break
case 'generated_query': case 'generated_query':
result.name = 'i-lucide-pause' // FIXME: 因为 deepResearch 有并发限制,这个 case 是为了明确区分状态。
break // 但是目前进入这个状态之后再进入 searching 状态,图标不会更新成 search不知道原因
// 暂时禁用了这个 case
// result.name = 'i-lucide-pause'
// result.pulse = true
// break
case 'searching': case 'searching':
result.name = 'i-lucide-search' result.name = 'i-lucide-search'
result.pulse = true result.pulse = true
@ -70,7 +75,7 @@
> >
{{ node.label }} {{ node.label }}
</UButton> </UButton>
<ol v-if="node.children.length > 0" class="flex flex-col gap-x-2"> <ol v-if="node.children.length > 0" class="flex flex-col gap-y-2">
<li v-for="node in node.children" :key="node.id"> <li v-for="node in node.children" :key="node.id">
<Tree <Tree
class="ml-2" class="ml-2"

View File

@ -4,7 +4,7 @@ import { z } from 'zod'
import { parseStreamingJson, type DeepPartial } from '~/utils/json' import { parseStreamingJson, type DeepPartial } from '~/utils/json'
import { trimPrompt } from './ai/providers' import { trimPrompt } from './ai/providers'
import { systemPrompt } from './prompt' import { languagePrompt, systemPrompt } from './prompt'
import zodToJsonSchema from 'zod-to-json-schema' import zodToJsonSchema from 'zod-to-json-schema'
import { type TavilySearchResponse } from '@tavily/core' import { type TavilySearchResponse } from '@tavily/core'
import { useTavily } from '~/composables/useTavily' import { useTavily } from '~/composables/useTavily'
@ -18,6 +18,7 @@ export type ResearchResult = {
export interface WriteFinalReportParams { export interface WriteFinalReportParams {
prompt: string prompt: string
learnings: string[] learnings: string[]
language: string
} }
// useRuntimeConfig() // useRuntimeConfig()
// Used for streaming response // Used for streaming response
@ -71,8 +72,10 @@ export function generateSearchQueries({
query, query,
numQueries = 3, numQueries = 3,
learnings, learnings,
language,
}: { }: {
query: string query: string
language: string
numQueries?: number numQueries?: number
// optional, if provided, the research will continue from the last learning // optional, if provided, the research will continue from the last learning
learnings?: string[] learnings?: string[]
@ -101,6 +104,7 @@ export function generateSearchQueries({
)}` )}`
: '', : '',
`You MUST respond in JSON with the following schema: ${jsonSchema}`, `You MUST respond in JSON with the following schema: ${jsonSchema}`,
languagePrompt(language),
].join('\n\n') ].join('\n\n')
return streamText({ return streamText({
model: useAiModel(), model: useAiModel(),
@ -118,9 +122,11 @@ function processSearchResult({
result, result,
numLearnings = 3, numLearnings = 3,
numFollowUpQuestions = 3, numFollowUpQuestions = 3,
language,
}: { }: {
query: string query: string
result: TavilySearchResponse result: TavilySearchResponse
language: string
numLearnings?: number numLearnings?: number
numFollowUpQuestions?: number numFollowUpQuestions?: number
}) { }) {
@ -135,15 +141,17 @@ function processSearchResult({
), ),
}) })
const jsonSchema = JSON.stringify(zodToJsonSchema(schema)) const jsonSchema = JSON.stringify(zodToJsonSchema(schema))
const contents = result.results.map((item) => item.content).filter(Boolean).map( const contents = result.results
(content) => trimPrompt(content, 25_000), .map((item) => item.content)
) .filter(Boolean)
.map((content) => trimPrompt(content, 25_000))
const prompt = [ const prompt = [
`Given the following contents from a SERP search for the query <query>${query}</query>, generate a list of learnings from the contents. Return a maximum of ${numLearnings} learnings, but feel free to return less if the contents are clear. Make sure each learning is unique and not similar to each other. The learnings should be concise and to the point, as detailed and information dense as possible. Make sure to include any entities like people, places, companies, products, things, etc in the learnings, as well as any exact metrics, numbers, or dates. The learnings will be used to research the topic further.`, `Given the following contents from a SERP search for the query <query>${query}</query>, generate a list of learnings from the contents. Return a maximum of ${numLearnings} learnings, but feel free to return less if the contents are clear. Make sure each learning is unique and not similar to each other. The learnings should be concise and to the point, as detailed and information dense as possible. Make sure to include any entities like people, places, companies, products, things, etc in the learnings, as well as any exact metrics, numbers, or dates. The learnings will be used to research the topic further.`,
`<contents>${contents `<contents>${contents
.map((content) => `<content>\n${content}\n</content>`) .map((content) => `<content>\n${content}\n</content>`)
.join('\n')}</contents>`, .join('\n')}</contents>`,
`You MUST respond in JSON with the following schema: ${jsonSchema}`, `You MUST respond in JSON with the following schema: ${jsonSchema}`,
languagePrompt(language),
].join('\n\n') ].join('\n\n')
return streamText({ return streamText({
@ -157,6 +165,7 @@ function processSearchResult({
export function writeFinalReport({ export function writeFinalReport({
prompt, prompt,
learnings, learnings,
language,
}: WriteFinalReportParams) { }: WriteFinalReportParams) {
const learningsString = trimPrompt( const learningsString = trimPrompt(
learnings learnings
@ -169,7 +178,8 @@ export function writeFinalReport({
`<prompt>${prompt}</prompt>`, `<prompt>${prompt}</prompt>`,
`Here are all the learnings from previous research:`, `Here are all the learnings from previous research:`,
`<learnings>\n${learningsString}\n</learnings>`, `<learnings>\n${learningsString}\n</learnings>`,
`Write the report in Markdown.`, `Write the report using Markdown.`,
languagePrompt(language),
`## Deep Research Report`, `## Deep Research Report`,
].join('\n\n') ].join('\n\n')
@ -188,6 +198,7 @@ export async function deepResearch({
query, query,
breadth, breadth,
maxDepth, maxDepth,
language,
learnings = [], learnings = [],
visitedUrls = [], visitedUrls = [],
onProgress, onProgress,
@ -197,6 +208,7 @@ export async function deepResearch({
query: string query: string
breadth: number breadth: number
maxDepth: number maxDepth: number
language: string
learnings?: string[] learnings?: string[]
visitedUrls?: string[] visitedUrls?: string[]
onProgress: (step: ResearchStep) => void onProgress: (step: ResearchStep) => void
@ -208,6 +220,7 @@ export async function deepResearch({
query, query,
learnings, learnings,
numQueries: breadth, numQueries: breadth,
language,
}) })
const limit = pLimit(ConcurrencyLimit) const limit = pLimit(ConcurrencyLimit)
@ -242,22 +255,18 @@ export async function deepResearch({
const results = await Promise.all( const results = await Promise.all(
searchQueries.map((searchQuery, i) => searchQueries.map((searchQuery, i) =>
limit(async () => { limit(async () => {
if (!searchQuery?.query) if (!searchQuery?.query) {
return { return {
learnings: [], learnings: [],
visitedUrls: [], visitedUrls: [],
} }
}
onProgress({ onProgress({
type: 'searching', type: 'searching',
query: searchQuery.query, query: searchQuery.query,
nodeId: childNodeId(nodeId, i), nodeId: childNodeId(nodeId, i),
}) })
try { try {
// const result = await firecrawl.search(searchQuery.query, {
// timeout: 15000,
// limit: 5,
// scrapeOptions: { formats: ['markdown'] },
// });
const result = await useTavily().search(searchQuery.query, { const result = await useTavily().search(searchQuery.query, {
maxResults: 5, maxResults: 5,
}) })
@ -266,7 +275,9 @@ export async function deepResearch({
) )
// Collect URLs from this search // Collect URLs from this search
const newUrls = result.results.map((item) => item.url).filter(Boolean) const newUrls = result.results
.map((item) => item.url)
.filter(Boolean)
onProgress({ onProgress({
type: 'search_complete', type: 'search_complete',
urls: newUrls, urls: newUrls,
@ -279,6 +290,7 @@ export async function deepResearch({
query: searchQuery.query, query: searchQuery.query,
result, result,
numFollowUpQuestions: nextBreadth, numFollowUpQuestions: nextBreadth,
language,
}) })
let searchResult: PartialSearchResult = {} let searchResult: PartialSearchResult = {}
@ -317,7 +329,7 @@ export async function deepResearch({
}) })
if ( if (
nextDepth < maxDepth && nextDepth <= maxDepth &&
searchResult.followUpQuestions?.length searchResult.followUpQuestions?.length
) { ) {
console.warn( console.warn(
@ -340,6 +352,7 @@ export async function deepResearch({
onProgress, onProgress,
currentDepth: nextDepth, currentDepth: nextDepth,
nodeId: childNodeId(nodeId, i), nodeId: childNodeId(nodeId, i),
language,
}) })
} else { } else {
return { return {

View File

@ -2,7 +2,7 @@ import { streamText } from 'ai'
import { z } from 'zod' import { z } from 'zod'
import { zodToJsonSchema } from 'zod-to-json-schema' import { zodToJsonSchema } from 'zod-to-json-schema'
import { systemPrompt } from './prompt' import { languagePrompt, systemPrompt } from './prompt'
import { useAiModel } from '~/composables/useAiProvider' import { useAiModel } from '~/composables/useAiProvider'
type PartialFeedback = DeepPartial<z.infer<typeof feedbackTypeSchema>> type PartialFeedback = DeepPartial<z.infer<typeof feedbackTypeSchema>>
@ -13,9 +13,11 @@ export const feedbackTypeSchema = z.object({
export function generateFeedback({ export function generateFeedback({
query, query,
language,
numQuestions = 3, numQuestions = 3,
}: { }: {
query: string query: string
language: string
numQuestions?: number numQuestions?: number
}) { }) {
const schema = z.object({ const schema = z.object({
@ -27,6 +29,7 @@ export function generateFeedback({
const prompt = [ const prompt = [
`Given the following query from the user, ask ${numQuestions} follow up questions to clarify the research direction. Return a maximum of ${numQuestions} questions, but feel free to return less if the original query is clear: <query>${query}</query>`, `Given the following query from the user, ask ${numQuestions} follow up questions to clarify the research direction. Return a maximum of ${numQuestions} questions, but feel free to return less if the original query is clear: <query>${query}</query>`,
`You MUST respond in JSON with the following schema: ${jsonSchema}`, `You MUST respond in JSON with the following schema: ${jsonSchema}`,
languagePrompt(language),
].join('\n\n') ].join('\n\n')
const stream = streamText({ const stream = streamText({

View File

@ -13,3 +13,18 @@ export const systemPrompt = () => {
- Consider new technologies and contrarian ideas, not just the conventional wisdom. - Consider new technologies and contrarian ideas, not just the conventional wisdom.
- You may use high levels of speculation or prediction, just flag it for me.` - You may use high levels of speculation or prediction, just flag it for me.`
} }
/**
* Construct the language requirement prompt for LLMs.
* Placing this at the end of the prompt makes it easier for the LLM to pay attention to.
* @param language the language of the prompt, e.g. `English`
*/
export const languagePrompt = (language: string) => {
let languagePrompt = `- Respond in ${language}.`
if (language === '中文') {
languagePrompt +=
' Add appropriate spaces between Chinese and Latin characters / numbers to improve readability.'
}
return languagePrompt
}

View File

@ -54,7 +54,7 @@
import type { ResearchFeedbackResult } from '~/components/ResearchFeedback.vue' import type { ResearchFeedbackResult } from '~/components/ResearchFeedback.vue'
import type { ResearchResult } from '~/lib/deep-research' import type { ResearchResult } from '~/lib/deep-research'
const { t } = useI18n() const { t, locale } = useI18n()
const { config } = useConfigStore() const { config } = useConfigStore()
const toast = useToast() const toast = useToast()
@ -113,6 +113,7 @@ ${feedback.value
prompt: getCombinedQuery(), prompt: getCombinedQuery(),
learnings: researchResult.value?.learnings ?? [], learnings: researchResult.value?.learnings ?? [],
visitedUrls: researchResult.value?.visitedUrls ?? [], visitedUrls: researchResult.value?.visitedUrls ?? [],
language: t('language', {}, { locale: locale.value }),
}) })
} }
</script> </script>

View File

@ -37,15 +37,15 @@ export async function* parseStreamingJson<T extends z.ZodType>(
let isParseSuccessful = false let isParseSuccessful = false
for await (const chunk of textStream) { for await (const chunk of textStream) {
rawText = removeJsonMarkdown(rawText + chunk) rawText += chunk
const parsed = parsePartialJson(rawText) const parsed = parsePartialJson(removeJsonMarkdown(rawText))
isParseSuccessful = isParseSuccessful =
parsed.state === 'repaired-parse' || parsed.state === 'successful-parse' parsed.state === 'repaired-parse' || parsed.state === 'successful-parse'
if (isParseSuccessful && isValid(parsed.value as any)) { if (isParseSuccessful && isValid(parsed.value as any)) {
yield parsed.value as DeepPartial<z.infer<T>> yield parsed.value as DeepPartial<z.infer<T>>
} else { } else {
console.dir(parsed, { depth: null, colors: true }) console.debug(`Failed to parse JSON:`, rawText)
} }
} }