137 lines
4.7 KiB
Python
137 lines
4.7 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
# Try to import cupy to check for CUDA availability
|
|
try:
|
|
import cupy
|
|
_CUPY_AVAILABLE = True
|
|
except ImportError:
|
|
_CUPY_AVAILABLE = False
|
|
|
|
from polysolve import Function, GA_Options, quadratic_solve
|
|
|
|
@pytest.fixture
|
|
def quadratic_func() -> Function:
|
|
"""Provides a standard quadratic function: 2x^2 - 3x - 5."""
|
|
f = Function(largest_exponent=2)
|
|
f.set_coeffs([2, -3, -5])
|
|
return f
|
|
|
|
@pytest.fixture
|
|
def linear_func() -> Function:
|
|
"""Provides a standard linear function: x + 10."""
|
|
f = Function(largest_exponent=1)
|
|
f.set_coeffs([1, 10])
|
|
return f
|
|
|
|
@pytest.fixture
|
|
def m_func_1() -> Function:
|
|
f = Function(2)
|
|
f.set_coeffs([2, 3, 1])
|
|
return f
|
|
|
|
@pytest.fixture
|
|
def m_func_2() -> Function:
|
|
f = Function(1)
|
|
f.set_coeffs([5, -4])
|
|
return f
|
|
|
|
# --- Core Functionality Tests ---
|
|
|
|
def test_solve_y(quadratic_func):
|
|
"""Tests if the function correctly evaluates y for a given x."""
|
|
assert quadratic_func.solve_y(5) == 30.0
|
|
assert quadratic_func.solve_y(0) == -5.0
|
|
assert quadratic_func.solve_y(-1) == 0.0
|
|
|
|
def test_derivative(quadratic_func):
|
|
"""Tests the calculation of the function's derivative."""
|
|
derivative = quadratic_func.derivative()
|
|
assert derivative.largest_exponent == 1
|
|
# The derivative of 2x^2 - 3x - 5 is 4x - 3
|
|
assert np.array_equal(derivative.coefficients, [4, -3])
|
|
|
|
def test_nth_derivative(quadratic_func):
|
|
"""Tests the calculation of the function's 2nd derivative."""
|
|
derivative = quadratic_func.nth_derivative(2)
|
|
assert derivative.largest_exponent == 0
|
|
# The derivative of 2x^2 - 3x - 5 is 4x - 3
|
|
assert np.array_equal(derivative.coefficients, [4])
|
|
|
|
def test_quadratic_solve(quadratic_func):
|
|
"""Tests the analytical quadratic solver for exact roots."""
|
|
roots = quadratic_solve(quadratic_func)
|
|
# Sorting ensures consistent order for comparison
|
|
assert sorted(roots) == [-1.0, 2.5]
|
|
|
|
# --- Arithmetic Operation Tests ---
|
|
|
|
def test_addition(quadratic_func, linear_func):
|
|
"""Tests the addition of two Function objects."""
|
|
# (2x^2 - 3x - 5) + (x + 10) = 2x^2 - 2x + 5
|
|
result = quadratic_func + linear_func
|
|
assert result.largest_exponent == 2
|
|
assert np.array_equal(result.coefficients, [2, -2, 5])
|
|
|
|
def test_subtraction(quadratic_func, linear_func):
|
|
"""Tests the subtraction of two Function objects."""
|
|
# (2x^2 - 3x - 5) - (x + 10) = 2x^2 - 4x - 15
|
|
result = quadratic_func - linear_func
|
|
assert result.largest_exponent == 2
|
|
assert np.array_equal(result.coefficients, [2, -4, -15])
|
|
|
|
def test_scalar_multiplication(linear_func):
|
|
"""Tests the multiplication of a Function object by a scalar."""
|
|
# (x + 10) * 3 = 3x + 30
|
|
result = linear_func * 3
|
|
assert result.largest_exponent == 1
|
|
assert np.array_equal(result.coefficients, [3, 30])
|
|
|
|
def test_function_multiplication(m_func_1, m_func_2):
|
|
"""Tests the multiplication of two Function objects."""
|
|
# (2x^2 + 3x + 1) * (5x -4) = 10x^3 + 7x^2 - 7x -4
|
|
result = m_func_1 * m_func_2
|
|
assert result.largest_exponent == 3
|
|
assert np.array_equal(result.coefficients, [10, 7, -7, -4])
|
|
|
|
# --- Genetic Algorithm Root-Finding Tests ---
|
|
|
|
def test_get_real_roots_numpy(quadratic_func):
|
|
"""
|
|
Tests that the NumPy-based genetic algorithm approximates the roots correctly.
|
|
"""
|
|
# Using more generations for higher accuracy in testing
|
|
ga_opts = GA_Options(num_of_generations=25, data_size=50000)
|
|
|
|
roots = quadratic_func.get_real_roots(ga_opts, use_cuda=False)
|
|
|
|
# Check if the algorithm found values close to the two known roots.
|
|
# We don't know which order they'll be in, so we check for presence.
|
|
expected_roots = np.array([-1.0, 2.5])
|
|
|
|
# Check that at least one found root is close to -1.0
|
|
assert np.any(np.isclose(roots, expected_roots[0], atol=1e-2))
|
|
|
|
# Check that at least one found root is close to 2.5
|
|
assert np.any(np.isclose(roots, expected_roots[1], atol=1e-2))
|
|
|
|
|
|
@pytest.mark.skipif(not _CUPY_AVAILABLE, reason="CuPy is not installed, skipping CUDA test.")
|
|
def test_get_real_roots_cuda(quadratic_func):
|
|
"""
|
|
Tests that the CUDA-based genetic algorithm approximates the roots correctly.
|
|
This test implicitly verifies that the CUDA kernel is functioning.
|
|
It will be skipped automatically if CuPy is not available.
|
|
"""
|
|
|
|
ga_opts = GA_Options(num_of_generations=25, data_size=50000)
|
|
|
|
roots = quadratic_func.get_real_roots(ga_opts, use_cuda=True)
|
|
|
|
expected_roots = np.array([-1.0, 2.5])
|
|
|
|
# Verify that the CUDA implementation also finds the correct roots within tolerance.
|
|
assert np.any(np.isclose(roots, expected_roots[0], atol=1e-2))
|
|
assert np.any(np.isclose(roots, expected_roots[1], atol=1e-2))
|
|
|