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Abstract

This paper presents an extension to the PolySolve genetic algorithm, enabling the simultaneous
discovery of real and complex roots for polynomials of degree n. By expanding the search space from
the real number line R to the complex plane C, the algorithm leverages the Fundamental Theorem
of Algebra to find all n roots. We demonstrate that this increase in dimensionality does not degrade
the accuracy of strictly real roots. The implementation utilizes an independent component evolu-
tion strategy for crossover and mutation, thereby decoupling the 2D optimization into parallel 1D sub-
problems and preserving the convergence characteristics of the original algorithm.

1 Introduction

Polynomial root finding is a fundamental problem in computational mathematics. While analytical solu-
tions exist for degrees n ≤ 4, higher-degree polynomials require numerical approximationmethods. The
previous iteration of PolySolve successfully applied a Genetic Algorithm (GA) to find roots on the real
line. However, this approach is fundamentally limited by the nature of polynomials, which often possess
roots with non-zero imaginary components.

The Fundamental Theorem of Algebra states that every non-zero, single-variable, degree n polyno-
mial with complex coefficients has exactly n roots in C [1]. Searching strictly in R ignores a significant
portion of the solution space. This update extends the strictly real-valued evolutionary strategy to the
complex plane, denoted as z = x+ iy.

2 Mathematical Formulation

Let P (z) be a polynomial of degree n with complex coefficients ck:

P (z) =
n∑

k=0

ckz
k (1)

We seek the set of values {zj}nj=1 such that P (zj) = 0.

2.1 Search Bounds (Cauchy’s Bound)

To efficiently initialize the population, wemust define a bounded region in the complex plane that contains
all roots. We utilize Cauchy’s Bound, which provides a disk of radius R centered at the origin [2]:

R = 1 +max

(∣∣∣∣cn−1

cn

∣∣∣∣ , ∣∣∣∣cn−2

cn

∣∣∣∣ , . . . , ∣∣∣∣ c0cn
∣∣∣∣) (2)

where cn is the leading coefficient. The search space is defined as the square regionS = {z ∈ C | |Re(z)| ≤
R, |Im(z)| ≤ R}, ensuring uniform coverage of potential root locations.
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2.2 Fitness Function

The objective is to minimize the modulus of the polynomial evaluation |P (z)|. We maximize a fitness
function F (z), defined as:

F (z) =
1

|P (z)|+ ε
(3)

where |P (z)| =
√

Re(P (z))2 + Im(P (z))2 and ε is a small constant to prevent division by zero.

3 2D Genetic Algorithm Implementation

The transition from 1D to 2D requires adapting core evolutionary operators.

3.1 Population Initialization

The population consists of N individuals. Each individual Ik is a complex number initialized uniformly
within the bounds determined by Cauchy’s Bound:

Re(Ik) ∼ U(−R,R), Im(Ik) ∼ U(−R,R)

3.2 Independent Component Crossover

Standard vector crossover techniques can be applied to complex numbers, but they often treat the com-
plex number as a strongly coupled vector. To maintain fine-grained search capability, we employ Indepen-
dent Component Crossover. Given parents P1 = x1+ iy1 and P2 = x2+ iy2, we apply the BLX-α (Blend
Crossover) operator to the real and imaginary parts independently. This operator, originally designed for
real-coded GAs, allows for effective exploration of interval-schemata [3, 4].

Let xmin = min(x1, x2) and xdiff = |x1 − x2|. The range for the child’s real component is:

[xmin − α · xdiff, xmax + α · xdiff] (4)

This creates a rectangular probabilistic region for offspring, allowing the algorithm to explore “off-axis”
solutions effectively.

3.3 Independent Component Mutation

Mutation is similarly decoupled. For z = x+ iy, we apply independent Gaussian noise:

x′ = x · (1 +N (0, σ)) (5)

y′ = y · (1 +N (0, σ)) (6)

This allows for simultaneous scaling and rotation in the complex plane.

4 Accuracy Analysis

A concern with increasing dimensionality is the potential “curse of dimensionality,” where the solution
space becomes too sparse to search effectively. Our implementationmitigates this through independent
component processing.
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4.1 Real Root Preservation

For a strictly real root xr, the target is z = xr + 0i. Since the selection pressure drives |P (z)| → 0, the
imaginary component y is driven towards 0. Because mutation y′ = y(1 + δ) scales with the current
value, as y becomes negligible (e.g., < 10−15), the 2D search dynamically collapses into a 1D search,
preserving precision.

5 Conclusion

The extension of PolySolve to the complex plane represents a robust generalization of the underlying evolu-
tionary strategy. By treating components as independent genetic traits, we avoid the pitfalls of higher
dimensional sparse searching. The algorithm correctly identifies the full set of n roots for an n-th de-
gree polynomial, fulfilling the Fundamental Theorem of Algebra [1] without sacrificing the precision of
real-valued solutions.
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