Compare commits
4 Commits
36f51ca67e
...
ac591f49ec
Author | SHA1 | Date | |
---|---|---|---|
ac591f49ec | |||
ec97aefee1 | |||
d27497488f | |||
41daf4f7e0 |
@ -1,10 +0,0 @@
|
||||
## Contributors
|
||||
|
||||
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
|
||||
<!-- prettier-ignore-start -->
|
||||
<!-- markdownlint-disable -->
|
||||
[](#contributors)
|
||||
<!-- markdownlint-restore -->
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
<!-- ALL-CONTRIBUTORS-LIST:END -->
|
11
README.md
11
README.md
@ -56,17 +56,22 @@ print(f"Value of f1 at x=5 is: {y_val}")
|
||||
# > Value of f1 at x=5 is: 30.0
|
||||
|
||||
# 3. Get the derivative: 4x - 3
|
||||
df1 = f1.differential()
|
||||
df1 = f1.derivative()
|
||||
print(f"Derivative of f1: {df1}")
|
||||
# > Derivative of f1: 4x - 3
|
||||
|
||||
# 4. Find roots analytically using the quadratic formula
|
||||
# 4. Get the 2nd derivative: 4
|
||||
df1 = f1.nth_derivative(2)
|
||||
print(f"2nd Derivative of f1: {df1}")
|
||||
# > Derivative of f1: 4
|
||||
|
||||
# 5. Find roots analytically using the quadratic formula
|
||||
# This is exact and fast for degree-2 polynomials.
|
||||
roots_analytic = quadratic_solve(f1)
|
||||
print(f"Analytic roots: {sorted(roots_analytic)}")
|
||||
# > Analytic roots: [-1.0, 2.5]
|
||||
|
||||
# 5. Find roots with the genetic algorithm (CPU)
|
||||
# 6. Find roots with the genetic algorithm (CPU)
|
||||
# This can solve polynomials of any degree.
|
||||
ga_opts = GA_Options(num_of_generations=20)
|
||||
roots_ga = f1.get_real_roots(ga_opts, use_cuda=False)
|
||||
|
@ -488,6 +488,10 @@ if __name__ == '__main__':
|
||||
df1 = f1.derivative()
|
||||
print(f"Derivative of f1: {df1}")
|
||||
|
||||
# Find the second derivative: 4
|
||||
ddf1 = f1.nth_derivative(2)
|
||||
print(f"Second derivative of f1: {ddf1}")
|
||||
|
||||
# --- Root Finding ---
|
||||
# 1. Analytical solution for quadratic
|
||||
roots_analytic = quadratic_solve(f1)
|
||||
|
Reference in New Issue
Block a user