FEAT: Added support for float coefficients (#13)
All checks were successful
Publish Python Package to PyPI / deploy (push) Successful in 13s
All checks were successful
Publish Python Package to PyPI / deploy (push) Successful in 13s
Reviewed-on: #13 Co-authored-by: Jonathan Rampersad <rampersad.jonathan@gmail.com> Co-committed-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
This commit is contained in:
@ -9,7 +9,7 @@ A Python library for representing, manipulating, and solving polynomial equation
|
|||||||
|
|
||||||
## Key Features
|
## Key Features
|
||||||
|
|
||||||
* **Create and Manipulate Polynomials**: Easily define polynomials of any degree and perform arithmetic operations like addition, subtraction, multiplication, and scaling.
|
* **Create and Manipulate Polynomials**: Easily define polynomials of any degree using integer or float coefficients, and perform arithmetic operations like addition, subtraction, multiplication, and scaling.
|
||||||
* **Genetic Algorithm Solver**: Find approximate real roots for complex polynomials where analytical solutions are difficult or impossible.
|
* **Genetic Algorithm Solver**: Find approximate real roots for complex polynomials where analytical solutions are difficult or impossible.
|
||||||
* **CUDA Accelerated**: Leverage NVIDIA GPUs for a massive performance boost when finding roots in large solution spaces.
|
* **CUDA Accelerated**: Leverage NVIDIA GPUs for a massive performance boost when finding roots in large solution spaces.
|
||||||
* **Analytical Solvers**: Includes standard, exact solvers for simple cases (e.g., `quadratic_solve`).
|
* **Analytical Solvers**: Includes standard, exact solvers for simple cases (e.g., `quadratic_solve`).
|
||||||
@ -44,6 +44,7 @@ Here is a simple example of how to define a quadratic function, find its propert
|
|||||||
from polysolve import Function, GA_Options, quadratic_solve
|
from polysolve import Function, GA_Options, quadratic_solve
|
||||||
|
|
||||||
# 1. Define the function f(x) = 2x^2 - 3x - 5
|
# 1. Define the function f(x) = 2x^2 - 3x - 5
|
||||||
|
# Coefficients can be integers or floats.
|
||||||
f1 = Function(largest_exponent=2)
|
f1 = Function(largest_exponent=2)
|
||||||
f1.set_constants([2, -3, -5])
|
f1.set_constants([2, -3, -5])
|
||||||
|
|
||||||
|
@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
|
|||||||
[project]
|
[project]
|
||||||
# --- Core Metadata ---
|
# --- Core Metadata ---
|
||||||
name = "polysolve"
|
name = "polysolve"
|
||||||
version = "0.2.2"
|
version = "0.3.0"
|
||||||
authors = [
|
authors = [
|
||||||
{ name="Jonathan Rampersad", email="jonathan@jono-rams.work" },
|
{ name="Jonathan Rampersad", email="jonathan@jono-rams.work" },
|
||||||
]
|
]
|
||||||
|
@ -12,8 +12,32 @@ try:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
_CUPY_AVAILABLE = False
|
_CUPY_AVAILABLE = False
|
||||||
|
|
||||||
# The CUDA kernel for the fitness function
|
# The CUDA kernels for the fitness function
|
||||||
_FITNESS_KERNEL = """
|
_FITNESS_KERNEL_FLOAT = """
|
||||||
|
extern "C" __global__ void fitness_kernel(
|
||||||
|
const double* coefficients,
|
||||||
|
int num_coefficients,
|
||||||
|
const double* x_vals,
|
||||||
|
double* ranks,
|
||||||
|
int size,
|
||||||
|
double y_val)
|
||||||
|
{
|
||||||
|
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
|
if (idx < size)
|
||||||
|
{
|
||||||
|
double ans = 0;
|
||||||
|
int lrgst_expo = num_coefficients - 1;
|
||||||
|
for (int i = 0; i < num_coefficients; ++i)
|
||||||
|
{
|
||||||
|
ans += coefficients[i] * pow(x_vals[idx], (double)(lrgst_expo - i));
|
||||||
|
}
|
||||||
|
|
||||||
|
ans -= y_val;
|
||||||
|
ranks[idx] = (ans == 0) ? 1.7976931348623157e+308 : fabs(1.0 / ans);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
_FITNESS_KERNEL_INT = """
|
||||||
extern "C" __global__ void fitness_kernel(
|
extern "C" __global__ void fitness_kernel(
|
||||||
const long long* coefficients,
|
const long long* coefficients,
|
||||||
int num_coefficients,
|
int num_coefficients,
|
||||||
@ -38,6 +62,7 @@ extern "C" __global__ void fitness_kernel(
|
|||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class GA_Options:
|
class GA_Options:
|
||||||
"""
|
"""
|
||||||
@ -76,13 +101,14 @@ class Function:
|
|||||||
self.coefficients: Optional[np.ndarray] = None
|
self.coefficients: Optional[np.ndarray] = None
|
||||||
self._initialized = False
|
self._initialized = False
|
||||||
|
|
||||||
def set_coeffs(self, coefficients: List[int]):
|
def set_coeffs(self, coefficients: List[Union[int, float]]):
|
||||||
"""
|
"""
|
||||||
Sets the coefficients of the polynomial.
|
Sets the coefficients of the polynomial.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
coefficients (List[int]): A list of integer coefficients. The list size
|
coefficients (List[Union[int, float]]): A list of integer or float
|
||||||
must be largest_exponent + 1.
|
coefficients. The list size
|
||||||
|
must be largest_exponent + 1.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
ValueError: If the input is invalid.
|
ValueError: If the input is invalid.
|
||||||
@ -96,7 +122,13 @@ class Function:
|
|||||||
if coefficients[0] == 0 and self._largest_exponent > 0:
|
if coefficients[0] == 0 and self._largest_exponent > 0:
|
||||||
raise ValueError("The first constant (for the largest exponent) cannot be 0.")
|
raise ValueError("The first constant (for the largest exponent) cannot be 0.")
|
||||||
|
|
||||||
self.coefficients = np.array(coefficients, dtype=np.int64)
|
# Check if any coefficient is a float
|
||||||
|
is_float = any(isinstance(c, float) for c in coefficients)
|
||||||
|
|
||||||
|
# Choose the dtype based on the input
|
||||||
|
target_dtype = np.float64 if is_float else np.int64
|
||||||
|
|
||||||
|
self.coefficients = np.array(coefficients, dtype=target_dtype)
|
||||||
self._initialized = True
|
self._initialized = True
|
||||||
|
|
||||||
def _check_initialized(self):
|
def _check_initialized(self):
|
||||||
@ -275,11 +307,16 @@ class Function:
|
|||||||
|
|
||||||
def _solve_x_cuda(self, y_val: float, options: GA_Options) -> np.ndarray:
|
def _solve_x_cuda(self, y_val: float, options: GA_Options) -> np.ndarray:
|
||||||
"""Genetic algorithm implementation using CuPy (GPU/CUDA)."""
|
"""Genetic algorithm implementation using CuPy (GPU/CUDA)."""
|
||||||
# Load the raw CUDA kernel
|
|
||||||
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL, 'fitness_kernel')
|
|
||||||
|
|
||||||
# Move coefficients to GPU
|
# Check the dtype of our coefficients array
|
||||||
d_coefficients = cupy.array(self.coefficients, dtype=cupy.int64)
|
if self.coefficients.dtype == np.float64:
|
||||||
|
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL_FLOAT, 'fitness_kernel')
|
||||||
|
d_coefficients = cupy.array(self.coefficients, dtype=cupy.float64)
|
||||||
|
elif self.coefficients.dtype == np.int64:
|
||||||
|
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL_INT, 'fitness_kernel')
|
||||||
|
d_coefficients = cupy.array(self.coefficients, dtype=cupy.int64)
|
||||||
|
else:
|
||||||
|
raise TypeError(f"Unsupported dtype for CUDA solver: {self.coefficients.dtype}")
|
||||||
|
|
||||||
# Create initial random solutions on the GPU
|
# Create initial random solutions on the GPU
|
||||||
d_solutions = cupy.random.uniform(
|
d_solutions = cupy.random.uniform(
|
||||||
@ -337,12 +374,16 @@ class Function:
|
|||||||
power = self._largest_exponent - i
|
power = self._largest_exponent - i
|
||||||
|
|
||||||
# Coefficient part
|
# Coefficient part
|
||||||
if c == 1 and power != 0:
|
coeff_val = c
|
||||||
|
if c == int(c):
|
||||||
|
coeff_val = int(c)
|
||||||
|
|
||||||
|
if coeff_val == 1 and power != 0:
|
||||||
coeff = ""
|
coeff = ""
|
||||||
elif c == -1 and power != 0:
|
elif coeff_val == -1 and power != 0:
|
||||||
coeff = "-"
|
coeff = "-"
|
||||||
else:
|
else:
|
||||||
coeff = str(c)
|
coeff = str(coeff_val)
|
||||||
|
|
||||||
# Variable part
|
# Variable part
|
||||||
if power == 0:
|
if power == 0:
|
||||||
@ -356,7 +397,7 @@ class Function:
|
|||||||
sign = ""
|
sign = ""
|
||||||
if i > 0:
|
if i > 0:
|
||||||
sign = " + " if c > 0 else " - "
|
sign = " + " if c > 0 else " - "
|
||||||
coeff = str(abs(c))
|
coeff = str(abs(coeff_val))
|
||||||
if abs(c) == 1 and power != 0:
|
if abs(c) == 1 and power != 0:
|
||||||
coeff = "" # Don't show 1 for non-constant terms
|
coeff = "" # Don't show 1 for non-constant terms
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user