feat(ga, api): Implement advanced GA strategy and refactor API for v0.4.0 (#16)
All checks were successful
Publish Python Package to PyPI / deploy (push) Successful in 18s
All checks were successful
Publish Python Package to PyPI / deploy (push) Successful in 18s
This commit introduces a major enhancement to the genetic algorithm's convergence logic and refactors key parts of the API for better clarity and usability.
- **feat(ga):** Re-implements the GA solver (CPU & CUDA) to use a more robust strategy based on Elitism, Crossover, and Mutation. This replaces the previous, less efficient model and is designed to significantly improve accuracy and convergence speed.
- **feat(api):** Updates `GA_Options` to expose the new GA strategy parameters:
- Renames `mutation_percentage` to `mutation_strength` for clarity.
- Adds `elite_ratio`, `crossover_ratio`, and `mutation_ratio`.
- Includes a `__post_init__` validator to ensure ratios are valid.
- **refactor(api):** Moves `quadratic_solve` from a standalone function to a method of the `Function` class (`f1.quadratic_solve()`). This provides a cleaner, more object-oriented API.
- **docs:** Updates the README, `GA_Options` doc page, and `quadratic_solve` doc page to reflect all API changes, new parameters, and updated usage examples.
- **chore:** Bumps version to 0.4.0.
Reviewed-on: #16
Co-authored-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
Co-committed-by: Jonathan Rampersad <rampersad.jonathan@gmail.com>
This commit was merged in pull request #16.
This commit is contained in:
32
README.md
32
README.md
@@ -43,12 +43,12 @@ pip install polysolve[cuda12]
|
||||
Here is a simple example of how to define a quadratic function, find its properties, and solve for its roots.
|
||||
|
||||
```python
|
||||
from polysolve import Function, GA_Options, quadratic_solve
|
||||
from polysolve import Function, GA_Options
|
||||
|
||||
# 1. Define the function f(x) = 2x^2 - 3x - 5
|
||||
# Coefficients can be integers or floats.
|
||||
f1 = Function(largest_exponent=2)
|
||||
f1.set_constants([2, -3, -5])
|
||||
f1.set_coeffs([2, -3, -5])
|
||||
|
||||
print(f"Function f1: {f1}")
|
||||
# > Function f1: 2x^2 - 3x - 5
|
||||
@@ -70,7 +70,7 @@ print(f"2nd Derivative of f1: {ddf1}")
|
||||
|
||||
# 5. Find roots analytically using the quadratic formula
|
||||
# This is exact and fast for degree-2 polynomials.
|
||||
roots_analytic = quadratic_solve(f1)
|
||||
roots_analytic = f1.quadratic_solve()
|
||||
print(f"Analytic roots: {sorted(roots_analytic)}")
|
||||
# > Analytic roots: [-1.0, 2.5]
|
||||
|
||||
@@ -89,6 +89,32 @@ print(f"Approximate roots from GA: {roots_ga[:2]}")
|
||||
|
||||
---
|
||||
|
||||
## Tuning the Genetic Algorithm
|
||||
|
||||
The `GA_Options` class gives you fine-grained control over the genetic algorithm's performance, letting you trade speed for accuracy.
|
||||
|
||||
The default options are balanced, but for very complex polynomials, you may want a more exhaustive search.
|
||||
|
||||
```python
|
||||
from polysolve import GA_Options
|
||||
|
||||
# Create a config for a much deeper, more accurate search
|
||||
# (slower, but better for high-degree, complex functions)
|
||||
ga_accurate = GA_Options(
|
||||
num_of_generations=50, # Run for more generations
|
||||
data_size=500000, # Use a larger population
|
||||
elite_ratio=0.1, # Keep the top 10%
|
||||
mutation_ratio=0.5 # Mutate 50%
|
||||
)
|
||||
|
||||
# Pass the custom options to the solver
|
||||
roots = f1.get_real_roots(ga_accurate)
|
||||
```
|
||||
|
||||
For a full breakdown of all parameters, including crossover_ratio, mutation_strength, and more, please see [the full GA_Options API Documentation](https://polysolve.jono-rams.work/docs/ga-options-api).
|
||||
|
||||
---
|
||||
|
||||
## Development & Testing Environment
|
||||
|
||||
This project is automatically tested against a specific set of dependencies to ensure stability. Our Continuous Integration (CI) pipeline runs on an environment using **CUDA 12.5** on **Ubuntu 24.04**.
|
||||
|
||||
@@ -5,7 +5,7 @@ build-backend = "setuptools.build_meta"
|
||||
[project]
|
||||
# --- Core Metadata ---
|
||||
name = "polysolve"
|
||||
version = "0.3.2"
|
||||
version = "0.4.0"
|
||||
authors = [
|
||||
{ name="Jonathan Rampersad", email="jonathan@jono-rams.work" },
|
||||
]
|
||||
|
||||
@@ -25,11 +25,10 @@ extern "C" __global__ void fitness_kernel(
|
||||
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (idx < size)
|
||||
{
|
||||
double ans = 0;
|
||||
int lrgst_expo = num_coefficients - 1;
|
||||
for (int i = 0; i < num_coefficients; ++i)
|
||||
double ans = coefficients[0];
|
||||
for (int i = 1; i < num_coefficients; ++i)
|
||||
{
|
||||
ans += coefficients[i] * pow(x_vals[idx], (double)(lrgst_expo - i));
|
||||
ans = ans * x_vals[idx] + coefficients[i];
|
||||
}
|
||||
|
||||
ans -= y_val;
|
||||
@@ -37,31 +36,6 @@ extern "C" __global__ void fitness_kernel(
|
||||
}
|
||||
}
|
||||
"""
|
||||
_FITNESS_KERNEL_INT = """
|
||||
extern "C" __global__ void fitness_kernel(
|
||||
const long long* coefficients,
|
||||
int num_coefficients,
|
||||
const double* x_vals,
|
||||
double* ranks,
|
||||
int size,
|
||||
double y_val)
|
||||
{
|
||||
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (idx < size)
|
||||
{
|
||||
double ans = 0;
|
||||
int lrgst_expo = num_coefficients - 1;
|
||||
for (int i = 0; i < num_coefficients; ++i)
|
||||
{
|
||||
ans += coefficients[i] * pow(x_vals[idx], (double)(lrgst_expo - i));
|
||||
}
|
||||
|
||||
ans -= y_val;
|
||||
ranks[idx] = (ans == 0) ? 1.7976931348623157e+308 : fabs(1.0 / ans);
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class GA_Options:
|
||||
@@ -70,18 +44,51 @@ class GA_Options:
|
||||
|
||||
Attributes:
|
||||
min_range (float): The minimum value for the initial random solutions.
|
||||
Default: -100.0
|
||||
max_range (float): The maximum value for the initial random solutions.
|
||||
Default: 100.0
|
||||
num_of_generations (int): The number of iterations the algorithm will run.
|
||||
sample_size (int): The number of top solutions to keep and return.
|
||||
data_size (int): The total number of solutions generated in each generation.
|
||||
mutation_percentage (float): The amount by which top solutions are mutated each generation.
|
||||
Default: 10
|
||||
sample_size (int): The number of top solutions to *return* at the end.
|
||||
Default: 1000
|
||||
data_size (int): The total number of solutions (population size)
|
||||
generated in each generation. Default: 100000
|
||||
mutation_strength (float): The percentage (e.g., 0.01 for 1%) by which
|
||||
a solution is mutated. Default: 0.01
|
||||
elite_ratio (float): The percentage (e.g., 0.05 for 5%) of the *best*
|
||||
solutions to carry over to the next generation
|
||||
unchanged (elitism). Default: 0.05
|
||||
crossover_ratio (float): The percentage (e.g., 0.45 for 45%) of the next
|
||||
generation to be created by "breeding" two
|
||||
solutions from the parent pool. Default: 0.45
|
||||
mutation_ratio (float): The percentage (e.g., 0.40 for 40%) of the next
|
||||
generation to be created by mutating solutions
|
||||
from the parent pool. Default: 0.40
|
||||
"""
|
||||
min_range: float = -100.0
|
||||
max_range: float = 100.0
|
||||
num_of_generations: int = 10
|
||||
sample_size: int = 1000
|
||||
data_size: int = 100000
|
||||
mutation_percentage: float = 0.01
|
||||
mutation_strength: float = 0.01
|
||||
elite_ratio: float = 0.05
|
||||
crossover_ratio: float = 0.45
|
||||
mutation_ratio: float = 0.40
|
||||
|
||||
def __post_init__(self):
|
||||
"""Validates the GA options after initialization."""
|
||||
total_ratio = self.elite_ratio + self.crossover_ratio + self.mutation_ratio
|
||||
if total_ratio > 1.0:
|
||||
raise ValueError(
|
||||
f"The sum of elite_ratio, crossover_ratio, and mutation_ratio must be <= 1.0, but got {total_ratio}"
|
||||
)
|
||||
if any(r < 0 for r in [self.elite_ratio, self.crossover_ratio, self.mutation_ratio]):
|
||||
raise ValueError("GA ratios cannot be negative.")
|
||||
if self.data_size < self.sample_size:
|
||||
warnings.warn(
|
||||
f"data_size ({self.data_size}) is less than sample_size ({self.sample_size}). "
|
||||
"The number of returned solutions will be limited to data_size."
|
||||
)
|
||||
|
||||
class Function:
|
||||
"""
|
||||
@@ -176,7 +183,7 @@ class Function:
|
||||
if self._largest_exponent == 0:
|
||||
raise ValueError("Cannot differentiate a constant (Function of degree 0).")
|
||||
|
||||
return self.derivitive()
|
||||
return self.derivative()
|
||||
|
||||
|
||||
def derivative(self) -> 'Function':
|
||||
@@ -269,8 +276,19 @@ class Function:
|
||||
|
||||
def _solve_x_numpy(self, y_val: float, options: GA_Options) -> np.ndarray:
|
||||
"""Genetic algorithm implementation using NumPy (CPU)."""
|
||||
elite_ratio = options.elite_ratio
|
||||
crossover_ratio = options.crossover_ratio
|
||||
mutation_ratio = options.mutation_ratio
|
||||
|
||||
data_size = options.data_size
|
||||
|
||||
elite_size = int(data_size * elite_ratio)
|
||||
crossover_size = int(data_size * crossover_ratio)
|
||||
mutation_size = int(data_size * mutation_ratio)
|
||||
random_size = data_size - elite_size - crossover_size - mutation_size
|
||||
|
||||
# Create initial random solutions
|
||||
solutions = np.random.uniform(options.min_range, options.max_range, options.data_size)
|
||||
solutions = np.random.uniform(options.min_range, options.max_range, data_size)
|
||||
|
||||
for _ in range(options.num_of_generations):
|
||||
# Calculate fitness for all solutions (vectorized)
|
||||
@@ -283,40 +301,75 @@ class Function:
|
||||
sorted_indices = np.argsort(-ranks)
|
||||
solutions = solutions[sorted_indices]
|
||||
|
||||
# Keep only the top solutions
|
||||
top_solutions = solutions[:options.sample_size]
|
||||
# --- Create the next generation ---
|
||||
|
||||
# For the next generation, start with the mutated top solutions
|
||||
# and fill the rest with new random values.
|
||||
# 1. Elitism: Keep the best solutions as-is
|
||||
elite_solutions = solutions[:elite_size]
|
||||
|
||||
# Define a "parent pool" of the top 50% of solutions to breed from
|
||||
parent_pool = solutions[:data_size // 2]
|
||||
|
||||
# 2. Crossover: Breed two parents to create a child
|
||||
# Select from the full list (indices 0 to data_size-1)
|
||||
parent1_indices = np.random.randint(0, data_size, crossover_size)
|
||||
parent2_indices = np.random.randint(0, data_size, crossover_size)
|
||||
parents1 = solutions[parent1_indices]
|
||||
parents2 = solutions[parent2_indices]
|
||||
# Simple "average" crossover
|
||||
crossover_solutions = (parents1 + parents2) / 2.0
|
||||
|
||||
# 3. Mutation:
|
||||
# Select from the full list (indices 0 to data_size-1)
|
||||
mutation_candidates = solutions[np.random.randint(0, data_size, mutation_size)]
|
||||
|
||||
# Use mutation_strength (the new name)
|
||||
mutation_factors = np.random.uniform(
|
||||
1 - options.mutation_percentage,
|
||||
1 + options.mutation_percentage,
|
||||
options.sample_size
|
||||
1 - options.mutation_strength,
|
||||
1 + options.mutation_strength,
|
||||
mutation_size
|
||||
)
|
||||
mutated_solutions = top_solutions * mutation_factors
|
||||
mutated_solutions = mutation_candidates * mutation_factors
|
||||
|
||||
new_random_solutions = np.random.uniform(
|
||||
options.min_range, options.max_range, options.data_size - options.sample_size
|
||||
)
|
||||
# 4. New Randoms: Add new blood to prevent getting stuck
|
||||
random_solutions = np.random.uniform(options.min_range, options.max_range, random_size)
|
||||
|
||||
solutions = np.concatenate([mutated_solutions, new_random_solutions])
|
||||
# Assemble the new generation
|
||||
solutions = np.concatenate([
|
||||
elite_solutions,
|
||||
crossover_solutions,
|
||||
mutated_solutions,
|
||||
random_solutions
|
||||
])
|
||||
|
||||
# Final sort of the best solutions from the last generation
|
||||
final_solutions = np.sort(solutions[:options.sample_size])
|
||||
return final_solutions
|
||||
# --- Final Step: Return the best results ---
|
||||
# After all generations, do one last ranking to find the best solutions
|
||||
y_calculated = np.polyval(self.coefficients, solutions)
|
||||
error = y_calculated - y_val
|
||||
ranks = np.where(error == 0, np.finfo(float).max, np.abs(1.0 / error))
|
||||
sorted_indices = np.argsort(-ranks)
|
||||
|
||||
# Get the top 'sample_size' solutions the user asked for
|
||||
best_solutions = solutions[sorted_indices][:options.sample_size]
|
||||
|
||||
return np.sort(best_solutions)
|
||||
|
||||
def _solve_x_cuda(self, y_val: float, options: GA_Options) -> np.ndarray:
|
||||
"""Genetic algorithm implementation using CuPy (GPU/CUDA)."""
|
||||
|
||||
# Check the dtype of our coefficients array
|
||||
if self.coefficients.dtype == np.float64:
|
||||
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL_FLOAT, 'fitness_kernel')
|
||||
d_coefficients = cupy.array(self.coefficients, dtype=cupy.float64)
|
||||
elif self.coefficients.dtype == np.int64:
|
||||
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL_INT, 'fitness_kernel')
|
||||
d_coefficients = cupy.array(self.coefficients, dtype=cupy.int64)
|
||||
else:
|
||||
raise TypeError(f"Unsupported dtype for CUDA solver: {self.coefficients.dtype}")
|
||||
elite_ratio = options.elite_ratio
|
||||
crossover_ratio = options.crossover_ratio
|
||||
mutation_ratio = options.mutation_ratio
|
||||
|
||||
data_size = options.data_size
|
||||
|
||||
elite_size = int(data_size * elite_ratio)
|
||||
crossover_size = int(data_size * crossover_ratio)
|
||||
mutation_size = int(data_size * mutation_ratio)
|
||||
random_size = data_size - elite_size - crossover_size - mutation_size
|
||||
|
||||
# ALWAYS cast coefficients to float64 for the kernel.
|
||||
fitness_gpu = cupy.RawKernel(_FITNESS_KERNEL_FLOAT, 'fitness_kernel')
|
||||
d_coefficients = cupy.array(self.coefficients, dtype=cupy.float64)
|
||||
|
||||
# Create initial random solutions on the GPU
|
||||
d_solutions = cupy.random.uniform(
|
||||
@@ -339,27 +392,62 @@ class Function:
|
||||
sorted_indices = cupy.argsort(-d_ranks)
|
||||
d_solutions = d_solutions[sorted_indices]
|
||||
|
||||
if i + 1 == options.num_of_generations:
|
||||
break
|
||||
# --- Create the next generation ---
|
||||
|
||||
# Get top solutions
|
||||
d_top_solutions = d_solutions[:options.sample_size]
|
||||
# 1. Elitism
|
||||
d_elite_solutions = d_solutions[:elite_size]
|
||||
|
||||
# Mutate top solutions on the GPU
|
||||
mutation_factors = cupy.random.uniform(
|
||||
1 - options.mutation_percentage, 1 + options.mutation_percentage, options.sample_size
|
||||
# Define a "parent pool" of the top 50% of solutions to breed from
|
||||
d_parent_pool = d_solutions[:data_size // 2]
|
||||
parent_pool_size = d_parent_pool.size
|
||||
|
||||
# 2. Crossover
|
||||
# Select from the full list (indices 0 to data_size-1)
|
||||
parent1_indices = cupy.random.randint(0, data_size, crossover_size)
|
||||
parent2_indices = cupy.random.randint(0, data_size, crossover_size)
|
||||
d_parents1 = d_solutions[parent1_indices]
|
||||
d_parents2 = d_solutions[parent2_indices]
|
||||
d_crossover_solutions = (d_parents1 + d_parents2) / 2.0
|
||||
|
||||
# 3. Mutation
|
||||
# Select from the full list (indices 0 to data_size-1)
|
||||
mutation_indices = cupy.random.randint(0, data_size, mutation_size)
|
||||
d_mutation_candidates = d_solutions[mutation_indices]
|
||||
|
||||
# Use mutation_strength (the new name)
|
||||
d_mutation_factors = cupy.random.uniform(
|
||||
1 - options.mutation_strength,
|
||||
1 + options.mutation_strength,
|
||||
mutation_size
|
||||
)
|
||||
d_mutated = d_top_solutions * mutation_factors
|
||||
d_mutated_solutions = d_mutation_candidates * d_mutation_factors
|
||||
|
||||
# Create new random solutions for the rest
|
||||
d_new_random = cupy.random.uniform(
|
||||
options.min_range, options.max_range, options.data_size - options.sample_size
|
||||
# 4. New Randoms
|
||||
d_random_solutions = cupy.random.uniform(
|
||||
options.min_range, options.max_range, random_size, dtype=cupy.float64
|
||||
)
|
||||
|
||||
d_solutions = cupy.concatenate([d_mutated, d_new_random])
|
||||
# Assemble the new generation
|
||||
d_solutions = cupy.concatenate([
|
||||
d_elite_solutions,
|
||||
d_crossover_solutions,
|
||||
d_mutated_solutions,
|
||||
d_random_solutions
|
||||
])
|
||||
|
||||
# --- Final Step: Return the best results ---
|
||||
# After all generations, do one last ranking to find the best solutions
|
||||
fitness_gpu(
|
||||
(blocks_per_grid,), (threads_per_block,),
|
||||
(d_coefficients, d_coefficients.size, d_solutions, d_ranks, d_solutions.size, y_val)
|
||||
)
|
||||
sorted_indices = cupy.argsort(-d_ranks)
|
||||
|
||||
# Get the top 'sample_size' solutions
|
||||
d_best_solutions = d_solutions[sorted_indices][:options.sample_size]
|
||||
|
||||
# Get the final sample, sort it, and copy back to CPU
|
||||
final_solutions_gpu = cupy.sort(d_solutions[:options.sample_size])
|
||||
final_solutions_gpu = cupy.sort(d_best_solutions)
|
||||
return final_solutions_gpu.get()
|
||||
|
||||
|
||||
@@ -481,36 +569,52 @@ class Function:
|
||||
def __imul__(self, other: Union['Function', int, float]) -> 'Function':
|
||||
"""Performs in-place multiplication by a scalar (func *= 3)."""
|
||||
|
||||
self.coefficients *= other
|
||||
self._check_initialized()
|
||||
|
||||
if isinstance(other, (int, float)):
|
||||
if other == 0:
|
||||
self.coefficients = np.array([0], dtype=self.coefficients.dtype)
|
||||
self._largest_exponent = 0
|
||||
else:
|
||||
self.coefficients *= other
|
||||
|
||||
elif isinstance(other, self.__class__):
|
||||
other._check_initialized()
|
||||
self.coefficients = np.polymul(self.coefficients, other.coefficients)
|
||||
self._largest_exponent = len(self.coefficients) - 1
|
||||
|
||||
else:
|
||||
return NotImplemented
|
||||
|
||||
return self
|
||||
|
||||
|
||||
def quadratic_solve(f: Function) -> Optional[List[float]]:
|
||||
"""
|
||||
Calculates the real roots of a quadratic function using the quadratic formula.
|
||||
def quadratic_solve(self) -> Optional[List[float]]:
|
||||
"""
|
||||
Calculates the real roots of a quadratic function using the quadratic formula.
|
||||
|
||||
Args:
|
||||
f (Function): A Function object of degree 2.
|
||||
Args:
|
||||
f (Function): A Function object of degree 2.
|
||||
|
||||
Returns:
|
||||
Optional[List[float]]: A list containing the two real roots, or None if there are no real roots.
|
||||
"""
|
||||
f._check_initialized()
|
||||
if f.largest_exponent != 2:
|
||||
raise ValueError("Input function must be quadratic (degree 2).")
|
||||
Returns:
|
||||
Optional[List[float]]: A list containing the two real roots, or None if there are no real roots.
|
||||
"""
|
||||
self._check_initialized()
|
||||
if self.largest_exponent != 2:
|
||||
raise ValueError("Input function must be quadratic (degree 2) to use quadratic_solve.")
|
||||
|
||||
a, b, c = f.coefficients
|
||||
a, b, c = self.coefficients
|
||||
|
||||
discriminant = (b**2) - (4*a*c)
|
||||
discriminant = (b**2) - (4*a*c)
|
||||
|
||||
if discriminant < 0:
|
||||
return None # No real roots
|
||||
if discriminant < 0:
|
||||
return None # No real roots
|
||||
|
||||
sqrt_discriminant = math.sqrt(discriminant)
|
||||
root1 = (-b + sqrt_discriminant) / (2 * a)
|
||||
root2 = (-b - sqrt_discriminant) / (2 * a)
|
||||
sqrt_discriminant = math.sqrt(discriminant)
|
||||
root1 = (-b + sqrt_discriminant) / (2 * a)
|
||||
root2 = (-b - sqrt_discriminant) / (2 * a)
|
||||
|
||||
return [root1, root2]
|
||||
return [root1, root2]
|
||||
|
||||
# Example Usage
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -8,7 +8,7 @@ try:
|
||||
except ImportError:
|
||||
_CUPY_AVAILABLE = False
|
||||
|
||||
from polysolve import Function, GA_Options, quadratic_solve
|
||||
from polysolve import Function, GA_Options
|
||||
|
||||
@pytest.fixture
|
||||
def quadratic_func() -> Function:
|
||||
@@ -60,7 +60,7 @@ def test_nth_derivative(quadratic_func):
|
||||
|
||||
def test_quadratic_solve(quadratic_func):
|
||||
"""Tests the analytical quadratic solver for exact roots."""
|
||||
roots = quadratic_solve(quadratic_func)
|
||||
roots = quadratic_func.quadratic_solve()
|
||||
# Sorting ensures consistent order for comparison
|
||||
assert sorted(roots) == [-1.0, 2.5]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user