feat(ga, api): Implement advanced GA strategy and refactor API for v0.4.0
This commit introduces a major enhancement to the genetic algorithm's convergence logic and refactors key parts of the API for better clarity and usability.
- **feat(ga):** Re-implements the GA solver (CPU & CUDA) to use a more robust strategy based on Elitism, Crossover, and Mutation. This replaces the previous, less efficient model and is designed to significantly improve accuracy and convergence speed.
- **feat(api):** Updates `GA_Options` to expose the new GA strategy parameters:
- Renames `mutation_percentage` to `mutation_strength` for clarity.
- Adds `elite_ratio`, `crossover_ratio`, and `mutation_ratio`.
- Includes a `__post_init__` validator to ensure ratios are valid.
- **refactor(api):** Moves `quadratic_solve` from a standalone function to a method of the `Function` class (`f1.quadratic_solve()`). This provides a cleaner, more object-oriented API.
- **docs:** Updates the README, `GA_Options` doc page, and `quadratic_solve` doc page to reflect all API changes, new parameters, and updated usage examples.
- **chore:** Bumps version to 0.4.0.
This commit is contained in:
@@ -60,7 +60,7 @@ def test_nth_derivative(quadratic_func):
|
||||
|
||||
def test_quadratic_solve(quadratic_func):
|
||||
"""Tests the analytical quadratic solver for exact roots."""
|
||||
roots = quadratic_solve(quadratic_func)
|
||||
roots = quadratic_func.quadratic_solve()
|
||||
# Sorting ensures consistent order for comparison
|
||||
assert sorted(roots) == [-1.0, 2.5]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user